Resonantly Damped Kink Magnetohydrodynamic Waves in a Partially Ionized Filament Thread
نویسنده
چکیده
Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2–10 min) and being damped after a few periods. Kink magnetohydrodynamic (MHD) wave modes have been proposed as responsible for the observed oscillations, whereas resonant absorption in the Alfvén continuum and ion-neutral collisions are the best candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma. Subject headings: Sun: oscillations — Sun: magnetic fields — Sun: corona — Sun: prominences
منابع مشابه
Magnetohydrodynamic Waves in a Partially Ionized Filament Thread
Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 104 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partia...
متن کاملDamping of filament thread oscillations: effect of the slow continuum
Transverse oscillations of small amplitude are commonly seen in highresolution observations of filament threads, i.e. the fine-structures of solar filaments/prominences, and are typically damped in a few periods. Kink wave modes supported by the thread body offer a consistent explanation of these observed oscillations. Among the proposed mechanisms to explain the kink mode damping, resonant abs...
متن کاملResonantly Damped Surface and Body MHD Waves in a Solar Coronal Slab with Oblique Propagation
The theory of magnetohydrodynamic (MHD) waves in solar coronal slabs in a zero-β configuration and for parallel propagation of waves does not allow the existence of surface waves. When oblique propagation of perturbations is considered both surface and body waves are able to propagate. When the perpendicular wave number is larger than a certain value, the body kink mode becomes a surface wave. ...
متن کاملCollisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation (resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromo...
متن کاملMHD surface type quasi-modes of a current sheet model
Resonantly damped surface type quasi-modes are computed as eigenmodes of the linear dissipative MHD equations for a simple equilibrium model of a current sheet. The current sheet is modeled by a nonuniform plasma layer embedded in a uniform plasma environment. The physical equilibrium variables change in a continuous way in the nonuniform plasma layer. In particular, this is the case with both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009